• Welcome to your new Gnomio site

    Now, you are in control!

    Moodle is an open-source Learning Management System (LMS) that provides educators with the tools and features to create and manage online courses. It allows educators to organize course materials, create quizzes and assignments, host discussion forums, and track student progress. Moodle is highly flexible and can be customized to meet the specific needs of different institutions and learning environments.

    Moodle supports both synchronous and asynchronous learning environments, enabling educators to host live webinars, video conferences, and chat sessions, as well as providing a variety of tools that support self-paced learning, including videos, interactive quizzes, and discussion forums. The platform also integrates with other tools and systems, such as Google Apps and plagiarism detection software, to provide a seamless learning experience.

    Moodle is widely used in educational institutions, including universities, K-12 schools, and corporate training programs. It is well-suited to online and blended learning environments and distance education programs. Additionally, Moodle's accessibility features make it a popular choice for learners with disabilities, ensuring that courses are inclusive and accessible to all learners.

    The Moodle community is an active group of users, developers, and educators who contribute to the platform's development and improvement. The community provides support, resources, and documentation for users, as well as a forum for sharing ideas and best practices. Moodle releases regular updates and improvements, ensuring that the platform remains up-to-date with the latest technologies and best practices.

    Links of interest:

    (You can edit or remove this text)

Available courses

vector space or a linear space is a group of objects called vectors, added collectively and multiplied (“scaled”) by numbers, called scalars. Scalars are usually considered to be real numbers. But there are few cases of scalar multiplication by rational numbers, complex numbers, etc. with vector spaces. The methods of vector addition and scalar multiplication must satisfy specific requirements such as axioms. Real vector space and complex vector space terms are used to define scalars as real or complex numbers. Let us learn more here.

Table of contents:

Vector Space Definition

A space comprised of vectors, collectively with the associative and commutative law of addition of vectors and also the associative and distributive process of multiplication of vectors by scalars is called vector space. A vector space consists of a set of V (elements of V are called vectors), a field F (elements of F are scalars) and the two operations

  • Vector addition is an operation that takes two vectors u, v ∈ V, and it produces the third vector u + v ∈ V
  • Scalar Multiplication is an operation that takes a scalar c ∈ F and a vector v ∈ V and it produces a new vector uv ∈ V.

Where both the operations must satisfy the following condition

Elements of V are mostly called vectors and the elements of F are mostly scalars. There are different types of vectors. To qualify the vector space V, the addition and multiplication operation must stick to the number of requirements called axioms. The axioms generalise the properties of vectors introduced in the field F. If it is over the real numbers R is called a real vector space and over the complex numbers, C is called the complex vector space.

What is the difference between Vector and Vector Space?

A vector is a part of a vector space whereas vector space is a group of objects which is multiplied by scalars and combined by the vector space axioms.

Is zero a vector space?

The trivial vector space, represented by {0}, is an example of vector space which contains zero vector or null vector. In this case, the addition and scalar multiplication are trivial.

What are Equal Vectors?

The vectors which have the same magnitude and the same direction are called equal vectors. When two vectors are equal, the addressed line segments are parallel. Also, their vector columns are identical.

Also, read:

Vector Space Axioms

All the axioms should be universally quantified. For vector addition and scalar multiplication, it should obey some of the axioms. Here eight axiom rules are given.

Conditions for Vector Addition

An operation vector addition ‘ + ‘ must satisfy the following conditions:

Closure : If x and y are any vectors in the vector space V, then x + y belongs to V

  • Commutative Law : For all vectors x and y in V, then x + y = y + x
  • Associative Law : For all vectors x, y and z in V, then x + (y + z) = (x + y) + z
  • Additive Identity : For any vector x in V, the vector space contains the additive identity element and it is denoted by ‘ 0 ‘ such that 0 + x = x and x + 0 = x
  • Additive inverse : For each vector x in V, there is an additive inverse -x to get a solution in V.

Condition for Scalar Multiplication

An operation scalar multiplication is defined between a scalar and a vector and it should satisfy the following condition :

Closure: If x is any vector and c is any real number in the vector space V, then x. c belongs to V

  • Associative Law: For all real numbers c and d, and the vector x in V, then c. (d. v) = (c . d). v
  • Distributive law: For all real numbers c and d, and the vector x in V, (c + d).v = c.v + c.d
  • Distributive law: For all real numbers c and the vectors x and y in V, c.(x + y) = c. x + c. y
  • Unitary Law : For all vectors x in V, then 1.v = v.1 = v

Vector Space Properties

Here are some basic properties that are derived from the axioms are

    • The addition operation of a finite list of vectors v1 v2, . . , vk can be calculated in any order, then the solution of the addition process will be the same.
    • If x + y = 0, then the value should be y = −x.
    • The negation of 0 is 0. This means that the value of −0 = 0.
    • The negation or the negative value of the negation of a vector is the vector itself: −(−v) = v.
    • If x + y = x, if and only if y = 0. Therefore, 0 is the only vector that behaves like 0.
    • The product of any vector with zero times gives the zero vector. 0 x y = 0 for every vector in y.
    • For every real number c, any scalar times of the zero vector is the zero vector. c0 = 0
    • If the value cx= 0, then either c = 0 or x = 0. The product of a scalar and a vector is equal to when either scalar is 0 or a vector is 0.
    • The scalar value −1 times a vector is the negation of the vector: (−1)x = −x. We define subtraction in terms of addition by defining x − y as an abbreviation for x + (−y).

x − y = x + (−y)

All the normal properties of subtraction follow:

  • x + y = z then the value x = z − y.
  • c(x − y) = cx − cy.
  • (c − d)x = cx − dx

linear transformation is a function from one vector space to another that respects the underlying (linear) structure of each vector space. A linear transformation is also known as a linear operator or map. The range of the transformation may be the same as the domain, and when that happens, the transformation is known as an endomorphism or, if invertible, an automorphism. The two vector spaces must have the same underlying field.